Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Reprod Health ; 6: 1330161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406668

RESUMO

Mitogen-activated protein kinases (MAPKs) represent widely expressed and evolutionarily conserved proteins crucial for governing signaling pathways and playing essential roles in mammalian male reproductive processes. These proteins facilitate the transmission of signals through phosphorylation cascades, regulating diverse intracellular functions encompassing germ cell development in testis, physiological maturation of spermatozoa within the epididymis, and motility regulation at ejaculation in the female reproductive tract. The conservation of these mechanisms appears prevalent across species, including humans, mice, and, to a limited extent, livestock species such as bovines. In Sertoli cells (SCs), MAPK signaling not only regulates the proliferation of immature SCs but also determines the appropriate number of SCs in the testes at puberty, thereby maintaining male fertility by ensuring the capacity for sperm cell production. In germ cells, MAPKs play a crucial role in dynamically regulating testicular cell-cell junctions, supporting germ cell proliferation and differentiation. Throughout spermatogenesis, MAPK signaling ensures the appropriate Sertoli-to-germ cell ratio by regulating apoptosis, controlling the metabolism of developing germ cells, and facilitating the maturation of spermatozoa within the cauda epididymis. During ejaculation in the female reproductive tract, MAPKs regulate two pivotal events-capacitation and the acrosome reaction essential for maintaining the fertility potential of sperm cells. Any disruptions in MAPK pathway signaling possibly may disturb the testicular microenvironment homeostasis, sperm physiology in the male body before ejaculation and in the female reproductive tract during fertilization, ultimately compromising male fertility. Despite decades of research, the physiological function of MAPK pathways in male reproductive health remains inadequately understood. The current review attempts to combine recent findings to elucidate the impact of MAPK signaling on male fertility and proposes future directions to enhance our understanding of male reproductive functions.

2.
Biol Reprod ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408205

RESUMO

Profiling bovine blastocyst transcriptome at the single-cell level has enabled us to reveal the first cell lineage segregation, during which the inner cell mass (ICM), trophectoderm (TE), and an undefined population of transitional cells were identified. By comparing the transcriptome of blastocysts derived in vivo (IVV), in vitro from a conventional culture medium (IVC), and in vitro from an optimized reduced nutrient culture medium (IVR), we found a delay of the cell fate commitment to ICM in the IVC and IVR embryos. Developmental potential differences between IVV, IVC, and IVR embryos were mainly contributed by ICM and transitional cells. Pathway analysis of these non-TE cells between groups revealed highly active metabolic and biosynthetic processes, reduced cellular signaling, and reduced transmembrane transport activities in IVC embryos that may lead to reduced developmental potential. IVR embryos had lower activities in metabolic and biosynthetic processes but increased cellular signaling and transmembrane transport, suggesting these cellular mechanisms may contribute to improved blastocyst development compared to IVC embryos. However, the IVR embryos had compromised development compared to IVV embryos with notably over-active transmembrane transport activities that impaired ion homeostasis.

3.
Reproduction ; 167(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301360

RESUMO

In brief: Peroxisome proliferator-activated receptor gamma (PPARG) is a critical regulator of placental function, but earlier roles in preimplantation embryo development and embryonic origins of placental formation have not been established. Results herein demonstrate that PPARG responds to pharmacologic stimulation in the bovine preimplantation embryo and influences blastocyst development, cell lineage specification, and transcripts important for placental function. Abstract: Peroxisome proliferator-activated receptor gamma (PPARG) is a key regulator of metabolism with conserved roles that are indispensable for placental function, suggesting previously unidentified and important roles in preimplantation embryo development. Herein, we report the functional characterization of bovine PPARG to reveal expression beginning on D6 of development with nuclear and ubiquitous patterns. Day 6 PPARG+ embryos have fewer total cells and a lower proportion of trophectoderm cells compared to PPARG- embryos (P < 0.05). Coculture with a PPARG agonist, rosiglitazone (Ros), or antagonist GW9662 (GW), decreases blastocyst development (P < 0.01). Day 7.5 (D7.5) developmentally delayed embryos exposed to Ros express lower transcript abundance of key genes important for placental development and cell lineage formation (CDX2, RXRB, SP1, TFAP2C, SIRT1, and PTEN). In contrast, Ros does not alter transcript abundance in D7.5 blastocysts, but GW treatment lowers RXRA, RXRB, SP1, and NFKB1 expression. Knockout of embryonic PPARG does not alter blastocyst formation and hatching ability but decreases total cell number in D7.5 blastocysts. The decreased embryo development response and affected pathways following targeted pharmacological perturbation vs embryonic knockout of PPARG suggest roles of both maternal and embryonic origins. These data reveal regulatory contributions of PPARG in preimplantation embryo development, cell lineage formation, and regulation of transcripts associated with placental function.


Assuntos
PPAR gama , Placenta , Gravidez , Animais , Bovinos , Feminino , PPAR gama/genética , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Placenta/metabolismo , Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento
4.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333292

RESUMO

Profiling transcriptome at single cell level of bovine blastocysts derived in vivo (IVV), in vitro from conventional culture medium (IVC), and reduced nutrient culture medium (IVR) has enabled us to reveal cell lineage segregation, during which forming inner cell mass (ICM), trophectoderm (TE), and an undefined population of transitional cells. Only IVV embryos had well-defined ICM, indicating in vitro culture may delay the first cell fate commitment to ICM. Differences between IVV, IVC and IVR embryos were mainly contributed by ICM and transitional cells. Pathway analysis by using the differentially expressed genes of these non-TE cells between groups pointed to highly active metabolic and biosynthetic processes, with reduced cellular signaling and membrane transport in IVC embryos, which may lead to reduced developmental potential. IVR embryos had lower activities in metabolic and biosynthetic processes, but increased cellular signaling and membrane transport, suggesting these cellular mechanisms may contribute to the improved blastocyst development compared to IVC embryos. However, the IVR embryos had compromised development when compared to IVV embryos with notably over-active membrane transport activities that led to impaired ion homeostasis.

5.
Reprod Biol Endocrinol ; 19(1): 141, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517901

RESUMO

Caudal Type Homeobox 2 (CDX2) is a key regulator of trophectoderm formation and maintenance in preimplantation embryos. We previously demonstrated that supplementation of exogenous follistatin, during in vitro culture of bovine IVF embryos, upregulates CDX2 expression, possibly, via alteration of the methylation status of CDX2 gene. Here, we further investigated the effects of exogenous follistatin supplementation on developmental competence and CDX2 methylation in bovine somatic cell nuclear transfer (SCNT) embryos. SCNT embryos were cultured with or without follistatin for 72h, then transferred into follistatin free media until d7 when blastocysts were collected and subjected to CDX2 gene expression and DNA methylation analysis for CDX2 regulatory regions by bisulfite sequencing. Follistatin supplementation significantly increased both blastocyst development as well as blastocyst CDX2 mRNA expression on d7. Three different CpG rich fragments within the CDX2 regulatory elements; proximal promoter (fragment P1, -1644 to -1180; P2, -305 to +126) and intron 1 (fragment I, + 3030 to + 3710) were identified and selected for bisulfite sequencing analysis. This analysis showed that follistatin treatment induced differential methylation (DM) at specific CpG sites within the analyzed fragments. Follistatin treatment elicited hypomethylation at six CpG sites at positions -1374, -279, -163, -23, +122 and +3558 and hypermethylation at two CpG sites at positions -243 and +20 in promoter region and first intron of CDX2 gene. Motif analysis using MatInspector revealed that differentially methylated CpG sites are putative binding sites for key transcription factors (TFs) known to regulate Cdx2 expression in mouse embryos and embryonic stem cells including OCT1, AP2F, KLF and P53, or TFs that have indirect link to CDX2 regulation including HAND and NRSF. Collectively, results of the present study together with our previous findings in IVF embryos support the hypothesis that alteration of CDX2 methylation is one of the epigenetic mechanisms by which follistatin may regulates CDX2 expression in preimplantation bovine embryos.


Assuntos
Blastocisto/efeitos dos fármacos , Fator de Transcrição CDX2/genética , Metilação de DNA/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Folistatina/farmacologia , Animais , Blastocisto/fisiologia , Fator de Transcrição CDX2/efeitos dos fármacos , Bovinos/embriologia , Células Cultivadas , Clonagem de Organismos/veterinária , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA/genética , Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Transferência Nuclear/veterinária
6.
Reprod Biomed Online ; 42(6): 1067-1074, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33814309

RESUMO

RESEARCH QUESTION: Is there a risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral exposure and potential cross-contamination from follicular fluid, culture media and vitrification solution within the IVF laboratory using strict patient screening and safety measures? DESIGN: This was a prospective clinical study. All women undergoing transvaginal oocyte retrieval were required to have a negative SARS-CoV-2 RNA test 3-5 days prior to the procedure. Male partners were not tested. All cases used intracytoplasmic sperm injection (ICSI). The first tube of follicular fluid aspirated during oocyte retrieval, drops of media following removal of the embryos on day 5, and vitrification solution after blastocyst cryopreservation were analysed for SARS-CoV-2 RNA. RESULTS: In total, medium from 61 patients, vitrification solution from 200 patients and follicular fluid from 300 patients was analysed. All samples were negative for SARS-CoV-2 viral RNA. CONCLUSIONS: With stringent safety protocols in place, including testing of women and symptom-based screening of men, the presence of SARS-CoV-2 RNA was not detected in follicular fluid, medium or vitrification solution. This work demonstrates the possibility of implementing a rapid laboratory screening assay for SARS-CoV-2 and has implications for safe laboratory operations, including cryostorage recommendations.


Assuntos
Meios de Cultura/análise , Fertilização in vitro , Líquido Folicular/virologia , Laboratórios , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Feminino , Humanos , Recuperação de Oócitos , Segurança do Paciente , Estudos Prospectivos , Injeções de Esperma Intracitoplásmicas , Vitrificação
7.
F S Sci ; 2(1): 33-42, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33521687

RESUMO

OBJECTIVE: To study messenger ribonucleic acid (mRNA) and protein expressions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry receptors (angiotensin 1-converting enzyme 2 [ACE2] and CD147) and proteases (transmembrane serine protease 2 [TMPRSS2] and cathepsin L [CTSL]) in human oocytes, embryos, and cumulus (CCs) and granulosa cells (GCs). DESIGN: Research study. SETTING: Clinical in vitro fertilization (IVF) treatment center. PATIENTS: Patients undergoing IVF were treated at the Colorado Center for Reproductive Medicine. INTERVENTIONS: Oocytes (germinal vesicle and metaphase II [MII]) and embryos (1-cell [1C] and blastocyst [BL]) were donated for research at the disposition by the patients undergoing IVF. Follicular cells (CC and GC) were collected from women undergoing egg retrieval after ovarian stimulation without an ovulatory trigger for in vitro maturation/IVF treatment cycles. MAIN OUTCOME MEASURES: Presence or absence of ACE2, CD147, TMPRSS2, and CTSL mRNAs detected using quantitative reverse transcription polymerase chain reaction and proteins detected using capillary Western blotting in human oocytes, embryos, and ovarian follicular cells. RESULTS: The quantitative reverse transcription polymerase chain reaction analysis revealed high abundance of ACE2 gene transcripts in germinal vesicle and MII oocytes than in CC, GC, and BL. ACE2 protein was present only in the MII oocytes, and 1C and BL embryos, but other ACE2 protein variants were observed in all the samples. TMPRSS2 protein was present in all the samples, whereas mRNA was observed only in the BL stage. All the samples were positive for CD147 and CTSL mRNA expressions. However, CCs and GCs were the only samples that showed coexpression of both CD147 and CTSL proteins in low abundance. CONCLUSIONS: CCs and GCs are the least susceptible to SARS-CoV-2 infection because of lack of the required combination of receptors and proteases (ACE2/TMPRSS2 or CD147/CTSL) in high abundance. The coexpression of ACE2 and TMPRSS2 proteins in the MII oocytes, zygotes, and BLs demonstrated that these gametes and embryos have the cellular machinery required and, thus, are potentially susceptible to SARS-CoV-2 infection if exposed to the virus. However, we do not know whether the infection occurs in vivo or in vitro in an assisted reproductive technology setting yet.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , RNA Mensageiro , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Angiotensinas , Basigina/genética , Basigina/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Catepsina L/genética , Catepsina L/metabolismo , Feminino , Humanos , RNA Mensageiro/genética , SARS-CoV-2/genética , Serina Endopeptidases/metabolismo , Zigoto
8.
PLoS One ; 16(2): e0225869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556062

RESUMO

Cancer cells develop tactics to circumvent the interventions by desensitizing themselves to interventions. Amongst many, the principle routes of desensitization include a) activation of survival pathways (e.g. NF-kB, PARP) and b) downregulation of cell death pathways (e.g. CD95/CD95L). As a result, it requires high therapeutic dose to achieve tumor regression which, in turn damages normal cells through the collateral effects. Methods are needed to sensitize the low and non-responsive resistant tumor cells including cancer stem cells (CSCs) in order to evoke a better response from the current treatments. Current treatments including chemotherapy can induce cell death only in bulk cancer cells sparing CSCs and cancer resistant cells (CRCs) which are shown to be responsible for high recurrence of disease and low patient survival. Here, we report several novel tumor targeted sensitizers derived from the natural Vitamin E analogue (AMP-001-003). The drug design is based on a novel concept "A priori activation of apoptosis pathways of tumor technology (AAAPT) which is designed to activate specific cell death pathways and inhibit survival pathways simultaneously and selectively in cancer cells sparing normal cells. Our results indicate that AMP-001-003 sensitize various types of cancer cells including MDA-MB-231 (triple negative breast cancer), PC3 (prostate cancer) and A543 (lung cancer) cells resulting in reducing the IC-50 of doxorubicin in vitro when used as a combination. At higher doses, AMP-001 acts as an anti-tumor agent on its own. The synergy between AMP-001 and doxorubicin could pave a new pathway to use AAAPT leading molecules as neoadjuvant to chemotherapy to achieve better efficacy and reduced off-target toxicity compared to the current treatments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias/tratamento farmacológico , Tocoferóis/farmacologia , Células A549 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células PC-3 , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Tocoferóis/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Reprod Dev ; 87(9): 998-1008, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32776625

RESUMO

CDX2 plays a crucial role in the formation and maintenance of the trophectoderm epithelium in preimplantation embryos. Follistatin supplementation during the first 72 hr of in vitro culture triggers a significant increase in blastocyst rates, CDX2 expression, and trophectoderm cell numbers. However, the underlying epigenetic mechanisms by which follistatin upregulates CDX2 expression are not known. Here, we investigated whether stimulatory effects of follistatin are linked to alterations in DNA methylation within key regulatory regions of the CDX2 gene. In vitro-fertilized (IVF) zygotes were cultured with or without 10 ng/ml of recombinant human follistatin for 72 hr, then cultured without follistatin until Day 7. The bisulfite-sequencing analysis revealed differential methylation (DM) at specific CpG sites within the CDX2 promoter and intron 1 following follistatin treatment. These DM CpG sites include five hypomethylated sites at positions -1384, -1283, -297, -163, and -23, and four hypermethylated sites at positions -1501, -250, -243, and +20 in the promoter region. There were five hypomethylated sites at positions +3060, +3105, +3219, +3270, and +3545 in intron 1. Analysis of transcription factor binding sites using MatInspector combined with a literature search revealed a potential association between differentially methylated CpG sites and putative binding sites for key transcription factors involved in regulating CDX2 expression. The hypomethylated sites are putative binding sites for FXR, STAF, OCT1, KLF, AP2 family, and P53 protein, whereas the hypermethylated sites are putative binding sites for NRSF. Collectively, our results suggest that follistatin may increase CDX2 expression in early bovine embryos, at least in part, by modulating DNA methylation at key regulatory regions.


Assuntos
Blastocisto/efeitos dos fármacos , Fator de Transcrição CDX2/genética , Bovinos/embriologia , Metilação de DNA/efeitos dos fármacos , Folistatina/farmacologia , Animais , Blastocisto/metabolismo , Fator de Transcrição CDX2/metabolismo , Bovinos/genética , Células Cultivadas , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento
10.
Sci Rep ; 10(1): 9263, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518371

RESUMO

Further refinement of culture media is needed to improve the quality of embryos generated in vitro. Previous results from our laboratory demonstrated that uptake of nutrients by the embryo is significantly less than what is supplied in traditional culture media. Our objective was to determine the impact of reduced nutrient concentrations in culture medium on mouse embryo development, metabolism, and quality as a possible platform for next generation medium formulation. Concentrations of carbohydrates, amino acids, and vitamins could be reduced by 50% with no detrimental effects, but blastocyst development was impaired at 25% of standard nutrient provision (reduced nutrient medium; RN). Addition of pyruvate and L-lactate (+PL) to RN at 50% of standard concentrations restored blastocyst development, hatching, and cell number. In addition, blastocysts produced in RN + PL contained more ICM cells and ATP than blastocysts cultured in our control (100% nutrient) medium; however, metabolic activity was altered. Similarly, embryos produced in the RN medium with elevated (50% control) concentrations of pyruvate and lactate in the first step medium and EAA and Glu in the second step medium were competent to implant and develop into fetuses at a similar rate as embryos produced in the control medium. This novel approach to culture medium formulation could help define the optimal nutrient requirements of embryos in culture and provide a means of shifting metabolic activity towards the utilization of specific metabolic pathways that may be beneficial for embryo viability.


Assuntos
Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/métodos , Aminoácidos Essenciais/farmacologia , Animais , Blastocisto/citologia , Dipeptídeos/farmacologia , Ácido Edético/farmacologia , Transferência Embrionária , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glucose/farmacologia , Ácido Láctico/farmacologia , Camundongos , Ácido Pirúvico/farmacologia
11.
Biol Reprod ; 102(4): 795-805, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31965149

RESUMO

Characterization of the molecular factors regulating early embryonic development and their functional mechanisms is critical for understanding the causes of early pregnancy loss in monotocous species (cattle, human). We previously characterized a stage specific functional role of follistatin, a TGF-beta superfamily binding protein, in promoting early embryonic development in cattle. The mechanism by which follistatin mediates this embryotropic effect is not precisely known as follistatin actions in cattle embryos are independent of its classically known activin inhibition activity. Apart from activin, follistatin is known to bind and modulate the activity of the bone morphogenetic proteins (BMPs), which signal through SMAD1/5 pathway and regulate several aspects of early embryogenesis in other mammalian species. Present study was designed to characterize the activity and functional requirement of BMP signaling during bovine early embryonic development and to investigate if follistatin involves BMP signaling for its stage specific embryotropic actions. Immunostaining and western blot analysis demonstrated that SMAD1/5 signaling is activated after embryonic genome activation in bovine embryos. However, days 1-3 follistatin treatment reduced the abundance of phosphorylated SMAD1/5 in cultured embryos. Inhibition of active SMAD1/5 signaling (8-16 cell to blastocyst) using pharmacological inhibitors and/or lentiviral-mediated inhibitory SMAD6 overexpression showed that SMAD1/5 signaling is required for blastocyst production, first cell lineage determination as well as mRNA and protein regulation of TE (CDX2) cell markers. SMAD1/5 signaling was also found to be essential for embryotropic actions of follistatin during days 4-7 but not days 1-3 of embryo development suggesting a role for follistatin in regulation of SMAD1/5 signaling in bovine embryos.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Folistatina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Gravidez , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo
12.
Biotechniques ; 68(3): 155-158, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31937114

RESUMO

We developed a simplified workflow of gDNA extraction from ejaculated bovine sperm using a low total number of sperm and a short time frame that yields high-quality DNA suitable for downstream methylation and genome analyses. These techniques have broad implications in human biomedical sciences and agriculture, including clinical diagnoses of infertility, the identification of single-nucleotide polymorphisms and aberrant methylation patterns that can impact fertility, lower embryo development and contribute to heritable disease. The methods described here provide a reliable, simplistic approach for analyzing both the genomic and epigenomic status of whole sperm ejaculates that can be adapted for laboratory diagnostics, clinical reproductive practice and basic research.


Assuntos
Metilação de DNA/genética , DNA/análise , Oligospermia/genética , Análise de Sequência de DNA/métodos , Espermatozoides/química , Animais , Bovinos , DNA/genética , Genoma/genética , Masculino , Oligospermia/veterinária , Reação em Cadeia da Polimerase , Análise do Sêmen , Análise de Sequência de DNA/veterinária
13.
Reprod Fertil ; 1(1): 51-65, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-35128423

RESUMO

Recent studies in our laboratory have indicated that bovine embryos only use a small amount of the nutrients available to them in culture. Our objective was to evaluate the developmental and molecular response of bovine embryos when nutrient concentrations in the culture medium were significantly reduced. Following IVM and IVF, embryos were cultured in media containing 75, 50, and 25% (experiment 1) or 25, 12.5, and 6.25% (experiment 2) of the concentrations of nutrients (carbohydrates, amino acids, and vitamins) present in our control medium (100%). Blastocyst formation, hatching, and allocation of cells to the inner cell mass (ICM) and trophectoderm (TE) were evaluated on day 7. Although the number of TE cells was decreased (P < 0.05) when nutrient concentrations were ≤25% (73.8-124.1 cells), it was not until nutrient concentrations were reduced to 6.25% that blastocyst formation (18.3 ± 3.0%) and hatching (3.0 ± 1.3%) were inhibited (P < 0.05) compared to embryos cultured in the control medium (156.1 ± 14.1 cells, 40.0 ± 3.8%, 20.0 ± 3.1%, respectively). Inhibition of fatty acid oxidation (etomoxir) reduced (P < 0.05) blastocyst development, with more pronounced effects at lower nutrient concentrations (≤12.5%). Reducing nutrient concentrations was associated with increased activity of AMPK, decreased activity of mTOR, and altered abundance of transcripts for hexokinase 1 (HK1), carnitine palmitoyl transferase 2 (CPT2), lactate dehydrogenase A (LDHA), and pyruvate dehydrogenase kinase 1 (PDK1), consistent with an increase in glucose and fatty acid metabolism. Reduced nutrient conditions provide a unique perspective on embryo metabolism that may facilitate the optimization of culture media. LAY SUMMARY: To support early embryo development in the first week after fertilisation, an appropriate mixture of nutrients (carbohydrates, amino acids, and vitamins) is needed in the culturing solution. However, refining these solutions to support optimal embryo health remains challenging. In this study, bovine (cow) embryos derived from abattoir material were used as a model for the development of other mammalian embryos, including humans. These embryos were cultured in the presence of 75, 50, 25, 12.5, or 6.25% of the nutrients present in control conditions (100%), which are similar to those reported for the fluids of the fallopian tubes and uterus. Embryo development was largely unaffected in the 75, 50, and 25% treatments, with some embryos developing in the presence of only 6.25% nutrients. Cow embryos are remarkably resilient to reduced concentrations of nutrients in their environment because they can utilize internal stores of fat as a source of energy.


Assuntos
Aminoácidos , Carboidratos , Animais , Bovinos , Meios de Cultura , Ácidos Graxos , Feminino , Humanos , Mamíferos , Vitamina A , Vitaminas
14.
Proc Natl Acad Sci U S A ; 116(45): 22635-22644, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636193

RESUMO

Single-cell RNA sequencing of cells from cultured human blastocysts has enabled us to define the transcriptomic landscape of placental trophoblast (TB) that surrounds the epiblast and associated embryonic tissues during the enigmatic day 8 (D8) to D12 peri-implantation period before the villous placenta forms. We analyzed the transcriptomes of 3 early placental cell types, cytoTB (CTB), syncytioTB (STB), and migratoryTB (MTB), picked manually from cultured embryos dissociated with trypsin and were able to follow sublineages that emerged from proliferating CTB at the periphery of the conceptus. A unique form of CTB with some features of STB was detectable at D8, while mature STB was at its zenith at D10. A form of MTB with a mixed MTB/CTB phenotype arose around D10. By D12, STB generation was in decline, CTB had entered a new phase of proliferation, and mature MTB cells had begun to move from the main body of the conceptus. Notably, the MTB transcriptome at D12 indicated enrichment of transcripts associated with IFN signaling, migration, and invasion and up-regulation of HLA-C, HLA-E, and HLA-G. The STB, which is distinct from the STB of later villous STB, had a phenotype consistent with intense protein export and placental hormone production, as well as migration and invasion. The studies show that TB associated with human embryos is in rapid developmental flux during peri-implantation period when it must invade, signal robustly to the mother to ensure that the pregnancy continues, and make first contact with the maternal immune system.


Assuntos
Diferenciação Celular , Trofoblastos/citologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Implantação do Embrião , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Placenta/citologia , Placenta/metabolismo , Gravidez , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Trofoblastos/metabolismo
15.
Oncotarget ; 10(38): 3667-3680, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31217901

RESUMO

Loss of the tumor suppressor phosphatase and tensin homolog (PTEN) is commonly observed in triple negative breast cancer (TNBC), leading to activation of the phosphoinositide 3-kinase (PI3K) signaling to promote tumor cell growth and chemotherapy resistance. In this study, we investigated whether adding a pan-PI3K inhibitor could improve the cytotoxic effect of eribulin, a non-taxane microtubule inhibitor, in TNBC patient-derived xenograft models (PDX) with loss of PTEN, and the underlying molecular mechanisms. Three TNBC-PDX models (WHIM6, WHIM12 and WHIM21), all with loss of PTEN expression, were tested for their response to BKM120 and eribulin, alone or in combination in vivo. In addition, the effect of drug treatment on cell proliferation and cell cycle progression were also performed in vitro using a panel of TNBC cell lines, including 2 derived from PDX models. The combination of eribulin and BKM120 led to additive or synergistic anti-tumor effect in 2 of the 3 PDX models, accompanied by an enhanced mitotic arrest and apoptosis in sensitive PDX models. In addition, the combination was synergistic in reducing mammosphere formation, and markers for epithelial-mesenchymal transition (EMT). In conclusion, PI3K inhibition induces synergistic anti-tumor effect when combined with eribulin, by enhancing mitotic arrest and apoptosis, as well as, reducing the cancer stem cell population. This study provides a preclinical rationale to investigate the therapeutic potential for the combination of PI3K inhibition and eribulin in the difficult to treat TNBC. Further studies are needed to identify the biomarkers of response for target patient selection.

16.
Toxicol Sci ; 168(2): 610-619, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629257

RESUMO

We previously demonstrated that periconception maternal administration (2 mg/kg body weight each) of cadmium chloride (CdCl2) plus methylmercury (II) chloride (CH3HgCl) impaired glucose homeostasis and increased body weights and abdominal adipose tissue weight of male offspring in the F1 generation. However, transgenerational effects of this exposure have not been studied. Therefore, the effects of periconception Cd+Hg administration on indices of chronic diseases at adulthood in F2-F4 generations were examined. Male and female progeny of Cd+Hg periconceptionally treated females, and offspring of vehicle control females were bred with naïve CD1 mice to obtain F2 offspring, with additional crosses as above to the F4 generation (F1-F4 animals were not administered Cd+Hg). Birth weights and litter size were similar in all generations. Indices of impaired glucose homeostasis were observed in matrilineally descended F2 male offspring, including reduced glucose tolerance, along with increased basal phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307 suggesting altered insulin signaling. Reduced glucose tolerance was also seen in F4 males. Increased body weight and/or abdominal adiposity were observed through the F4 generation in males descended matrilineally from the treated female progenitors. Patrilineally derived F2 females displayed reduced glucose tolerance. Females (F2) patrilineally and matrilineally derived displayed significant kidney enlargement. Periconception administration of cadmium and mercury caused persistent transgenerational effects in offspring through the F4 generation in the absence of continued toxicant exposure, with persistent transgenerational effects inherited specifically through the matrilineal germline.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Metais Pesados/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Tecido Adiposo/embriologia , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Feminino , Masculino , Compostos de Metilmercúrio/toxicidade , Camundongos Endogâmicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fatores Sexuais
17.
Biotechniques ; 65(5): 281-283, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30394131

RESUMO

CRISPR technologies used for mammalian embryology have wide implications from basic research to applications in agriculture and biomedicine. Confirmation of successful gene editing following CRISPR/Cas9 delivery is often limited to either protein expression or sequencing analyses of embryos but not both, due to technical challenges. Herein we report an integrative approach for evaluating both protein expression and genotype of single embryos from fixed bovine embryos previously subjected to CRISPR/Cas9 microinjection. The techniques described facilitate investigation of functional genomics in bovine embryos compatible with gene editing in livestock after zygotic CRISPR microinjection. These methods avoid traditional avenues that necessitate the use of gene-edited cell lines followed by nuclear transfer that hinder efficiency, limit physiological relevance and contribute to technical challenges.


Assuntos
Sistemas CRISPR-Cas , Bovinos/embriologia , Bovinos/genética , Edição de Genes/métodos , Animais , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/análise , DNA/genética , Embrião de Mamíferos/química , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/ultraestrutura , Imuno-Histoquímica/métodos , Imagem Óptica/métodos , Análise de Sequência de DNA/métodos , Fixação de Tecidos/métodos
18.
Reprod Biol ; 18(3): 267-273, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30196810

RESUMO

Using sex-sorted semen to produce offspring of desired sex is associated with reduced developmental competence in vitro and lower fertility rates in vivo. The objectives of the present study were to investigate the effects of exogenous follistatin supplementation on the developmental competence of bovine embryos produced with sex-sorted semen and possible link between TGF-ß regulated pathways and embryotrophic actions of follistatin. Effects of follistatin on expression of cell lineage markers (CDX2 and Nanog) and downstream targets of SMAD signaling (CTGF, ID1, ID2 and ID3) and AKT phosphorylation were investigated. Follistatin was supplemented during the initial 72 h of embryo culture. Exogenous follistatin restored the in vitro developmental competence of embryos produced with sex-sorted semen to the levels of control embryos produced with unsorted semen, and comparable results were obtained using sorted semen from three different bulls. The mRNA abundance for SMAD signaling downstream target genes, CTGF (SMAD 2/3 pathway) and ID2 (SMAD 1/5 pathway), was lower in blastocysts produced using sex-sorted versus unsorted semen, but mRNA levels for CDX2, NANOG, ID1 and ID3 were similar in both groups. Follistatin supplementation restored CTGF and ID2 mRNA in blastocysts produced using sex-sorted semen to levels of control embryos. Moreover, levels of phosphorylated (p)AKT (Ser-473 and Thr-308) were similar in embryos derived from sex-sorted and unsorted semen, but follistatin treatment increased pAKT levels in both groups. Taken together, results demonstrated that follistatin improves in vitro development of embryos produced with sex-sorted semen and such effects are associated with enhanced indices of SMAD signaling.


Assuntos
Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização in vitro/veterinária , Folistatina/farmacologia , Sêmen , Animais , Bovinos , Desenvolvimento Embrionário/fisiologia , Feminino , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Sci Rep ; 8(1): 7753, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773834

RESUMO

POU5F1 is a transcription factor and master regulator of cell pluripotency with indispensable roles in early embryo development and cell lineage specification. The role of embryonic POU5F1 in blastocyst formation and cell lineage specification differs between mammalian species but remains completely unknown in cattle. The CRISPR/Cas9 system was utilized for targeted disruption of the POU5F1 gene by direct injection into zygotes. Disruption of the bovine POU5F1 locus prevented blastocyst formation and was associated with embryonic arrest at the morula stage. POU5F1 knockout morulas developed at a similar rate as control embryos and presented a similar number of blastomeres by day 5 of development. Initiation of SOX2 expression by day 5 of development was not affected by lack of POU5F1. On the other hand, CDX2 expression was aberrant in embryos lacking POU5F1. Notably, the phenotype observed in bovine POU5F1 knockout embryos reveals conserved functions associated with loss of human embryonic POU5F1 that differ from Pou5f1- null mice. The similarity observed in transcriptional regulation of early embryo development between cattle and humans combined with highly efficient gene editing techniques make the bovine a valuable model for human embryo biology with expanded applications in agriculture and assisted reproductive technologies.


Assuntos
Blastocisto/citologia , Linhagem da Célula , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Blastocisto/metabolismo , Sistemas CRISPR-Cas , Bovinos , Embrião de Mamíferos/metabolismo , Feminino , Edição de Genes , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/genética
20.
Cancer Res ; 78(10): 2732-2746, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29472518

RESUMO

Activation of PI3K signaling is frequently observed in triple-negative breast cancer (TNBC), yet PI3K inhibitors have shown limited clinical activity. To investigate intrinsic and adaptive mechanisms of resistance, we analyzed a panel of patient-derived xenograft models of TNBC with varying responsiveness to buparlisib, a pan-PI3K inhibitor. In a subset of patient-derived xenografts, resistance was associated with incomplete inhibition of PI3K signaling and upregulated MAPK/MEK signaling in response to buparlisib. Outlier phosphoproteome and kinome analyses identified novel candidates functionally important to buparlisib resistance, including NEK9 and MAP2K4. Knockdown of NEK9 or MAP2K4 reduced both baseline and feedback MAPK/MEK signaling and showed synthetic lethality with buparlisib in vitro A complex in/del frameshift in PIK3CA decreased sensitivity to buparlisib via NEK9/MAP2K4-dependent mechanisms. In summary, our study supports a role for NEK9 and MAP2K4 in mediating buparlisib resistance and demonstrates the value of unbiased omic analyses in uncovering resistance mechanisms to targeted therapy.Significance: Integrative phosphoproteogenomic analysis is used to determine intrinsic resistance mechanisms of triple-negative breast tumors to PI3K inhibition. Cancer Res; 78(10); 2732-46. ©2018 AACR.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , MAP Quinase Quinase 4/genética , Morfolinas/farmacologia , Quinases Relacionadas a NIMA/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Humanos , Espectrometria de Massas , Camundongos , Proteômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...